Lecture 7

Examples. 0 For an g set $A, A^{\mathbb{N}}$ is complete with the usual metric.

Proof. Rall At a ball in This space is clopen at equal to a cylinder $[a]$ be sone $w \in A^{C N}$. Note that if $\left[w_{1}\right] \geqslant\left[w_{2}\right] \Leftrightarrow w_{1} \leq w_{2}$.
Thus, a decreasing sag. (B_{n}) of balls is $B_{n}=\left[w_{n}\right]$ where $w_{n} \leqq w_{n+1}$.
Suppose $\operatorname{dim}\left(B_{n}\right) \rightarrow 0$, so $w_{n} \subseteq W_{n+1}$. Then $V_{n} w_{n}$ is an infinite word, ce. $=x \in A^{N_{N}}$ al $x \in \bigcap_{n} B_{n}$.
$\bigcirc \mathbb{R}$ is (uctric) complete.
Proof. W_{c} will use $M t \mathbb{R}$ is order-coplete, ie. even set $A \leq \mathbb{R}$ bode above has a superman (\Leftrightarrow every set $A \leq \mathbb{R}$ hod below has ar infinite) A closed ball in \mathbb{R} is just a closed interval. let (In) be a decreasing segnende of closed

Wdd intervals (and ne don't even weed Int dian $\left(I_{4}\right) \rightarrow 0$). Let $I_{n}=\left[a_{n}, b_{n}\right]$, then (a-) is increasing l Ldd $b_{y} b_{0}$ al (bal is lecreasing al bdd by a_{0}. Then let $a:=\sin \left\{a_{n}\right\}$ \& $b:=\inf \left\{b_{n}\right\}$. The isterval $\| f=[a, b] \leq \bigcap_{n}\left[a_{n}, b_{n}\right]$.

Coc. The segaence $x_{n+2}=\frac{1}{2}\left(x_{n+1}+x_{n}\right)$ has a lisit, $\forall x_{0}<x_{1}$. HW Find it.
Prod. Condractive \rightarrow Candy \Rightarrow convergest.
Obs. A subset Y of a conglete nutric space (x, d) is closed $<\rightarrow$ it's complete with rexp. to d.
Pcoof. \Rightarrow Any Cancly res. $\left(y_{n}\right) \leq \psi$ converges is X to a linit x, bat then $x \in Y$ bune Y is closel. $<$ For ay $x \in \bar{Y}$, \exists נus. $\left(y_{n}\right) \leqslant Y$ conkeriy fo K. Tuas, $\left(y_{0}\right)$ is Cancly hence has a lisit $y \in Y$. But limids are unigac in netric ppaces, so $x=y \in Y$.

Metcic-aglation. Let (x, d) be a uetric space. A corpletion of
X is a ceglete eetric space $(\hat{x}, \hat{\lambda})$ sit. x embeds isonetrically into \hat{x} al the inage is dense. Ibentifging X with its isage, we may assume WLOG (Without loss Of benecalif) xut $x \leq \hat{x}$ al $\left.\hat{d}\right|_{x}=d$.

Unijnenen (upto isonetric isonorphism). If (\hat{x}, \hat{d}) al (\tilde{x}, \tilde{d}) ane copletions of x then \exists bjective isometry $f: \hat{x}_{v_{x} \leq}^{\rightarrow} \leq x$ fixing x pointwise, i.e. $f f_{x}=i d_{x}$.
Proot. Beose x is lense in both \hat{x} a \hat{x}, its closere $\hat{x} \dot{x}$ in $\hat{\imath}$ is $\hat{x} l$ in \check{x} is \bar{x}. Detine $f: \hat{x} \rightarrow \bar{x}$ as follows: for eanh $\hat{x} \in \hat{X}$ cloose a ses. (t_{a}) $\subseteq X$ wavergeing do \hat{x}. Ten $\left(x_{n}\right)$ is Cancly in \hat{x} hence also Canch in \mathscr{C} bene f is an isonetry d identits on X.
B) the oupleteness of $\check{x}, \quad\left(x_{a}\right)$ has a linit $\tilde{x} \in \tilde{X}$, and we define $f(\hat{x}):=\tilde{x}$.
HW (a) Prove that f is wellodefined, i.e. doesn't depand on the hoice of $\left(x_{n}\right)$.
(b) Prove hd f is abijective ivontry.

Existence (of completion), let (x, d) be a aetric ipace. Let Cancly $(x) \leq X^{\mathbb{N}}$ be the set. © Canch segsences in X.
Detive hor too $\left(x_{n}\right),\left(y_{n}\right) \in \operatorname{Can}$ hy (x),

$$
D\left(\left(x_{n}\right),\left(y_{n}\right)\right):=\lim _{n} d\left(x_{n}, y_{n}\right) .
$$

HWW Prove Int $\left(d\left(x_{a}, y_{4}\right)\right)$ is a Canch segaence in \mathbb{R}, have the linit eviste.
this D is a pseodo-metric, so we take $\hat{x}:=$ Cauch $(x) / w_{0}$ l get a wetric space $\left(\hat{x}^{\prime}, \hat{d}\right)$. For $\left(x_{n}\right) \in C_{a n} \operatorname{ly}(x)$, let $\left[x_{n}\right]$ lesote its \sim_{D}-equivalence clas.
We eubed x inte \hat{x} by

$$
x \mapsto[x, x, x, \ldots]
$$

This is clearly an isometry.
We shou the the comstant sepuacice from X are desse in $\hat{X}:$ Let $\left[x_{n}\right] \in \hat{X} \xlongequal[1]{\text { arl } i>0}$ Then bere $\left(x_{n}\right)$ is lancl, $\} n$ a.t. $\operatorname{dicm}\left(\left\{x_{n}, x_{n+1}, x_{n+2}, \ldots\right\}\right)<\varepsilon$ hence

$$
\hat{d}\left(\left[x_{n}, x_{1}, x_{4}, \ldots\right],\left[x_{0}, x_{1}, x_{2}, \ldots, x_{4}, x_{n+1}, \ldots\right]\right)<\mathcal{E} .
$$

It renains to show $U_{d} t \hat{x}$ is complete.
Note: Every Cancly sey. $\left(x_{n}\right)$ is equivaleat do ay of its subsegnence $\left(k_{n_{k}}\right)$, i.e. $\left[x_{k}\right]=\left[x_{n_{k}}\right]$. (B_{g} Candy-nen.)

To prove wopllenenen, let $\left(\hat{x}^{k}\right) \subseteq \hat{X}$ be a \hat{d}-Cancly sechese, whor $\hat{x}_{k}^{k}=\left[x_{n}^{k}\right]$. Moviy to subsesecces if needed, $\hat{x}^{\prime}: x_{1} x_{2}^{1} x_{3}^{\prime} x_{4}^{\prime} x_{5}^{1} \ldots$ wo mag assune WLOG Rt $k \quad \hat{x}^{2}: x_{1}^{2}\left[\begin{array}{lll}2 \\ 2\end{array} x_{3}^{2} x_{4}^{2} x_{5}^{2}\right.$.

$$
\hat{x}^{3}=x_{1}^{3} x_{2}^{3} x_{2}^{3} x_{4}^{3} x_{1}^{3}-
$$

(i) $\forall n \geqslant k \quad d\left(x_{n}^{n}, x_{n}^{k}\right)<\frac{1}{k}$.
$n \quad \hat{x}^{4}: x_{1}^{4} x_{2}^{4} x_{3}^{4} x_{4}^{4} x_{5}^{4}$.
(i) $\forall m d\left(x_{k}^{k}, x_{k+m}^{k}\right)<\frac{1}{k}$.
let $\hat{x}:=\left[x_{n}^{n}\right]$.
(lain: $\left(x_{n}^{n}\right)$ is $C_{\text {andy }}$, so $\hat{x} \in \hat{X}$.
مcoof. Indeed, $d\left(x_{k}^{x}, x_{k+h}^{k+k}\right) \leq d\left(x_{k}^{k}, x_{k+m}^{k}\right)+d\left(x_{k+n}^{k}, x_{k+4}^{k+n}\right)$
Unim. $\quad \hat{x}^{k} \rightarrow \hat{x}$.
Proof. $\hat{d}\left(\hat{x}^{k}, \hat{x}\right)=D\left(\left(x_{n}^{k}\right),\left(x_{n}^{n}\right)\right)=\lim _{n} d\left(x_{n}^{k}, x_{n}^{n}\right)<\frac{1}{k}$.

$$
\rightarrow 0 \text { us } k \rightarrow a \text {. }
$$

